Search results
Results from the WOW.Com Content Network
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles.
P s (T) is the saturation vapor pressure in hPa; exp(x) is the exponential function; T is the air temperature in degrees Celsius; Buck (1981) also lists enhancement factors for a temperature range of −80 to 50 °C (−112 to 122 °F) at pressures of 1,000 mb, 500 mb, and 250 mb. These coefficients are listed in the table below.
e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
For temperature range: 173.15 K to 273.15 K or equivalently −100 °C to 0 °C At triple point. An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to: