Search results
Results from the WOW.Com Content Network
This local increase in order is, however, only possible at the expense of an entropy increase in the surroundings; here more disorder must be created. [9] [15] The conditioner of this statement suffices that living systems are open systems in which both heat, mass, and or work may transfer into or out of the system. Unlike temperature, the ...
Although entropy does increase in the model of an expanding universe, the maximum possible entropy rises much more rapidly, moving the universe further from the heat death with time, not closer. [ 97 ] [ 98 ] [ 99 ] This results in an "entropy gap" pushing the system further away from the posited heat death equilibrium. [ 100 ]
The internal energy of an ideal gas depends only on its temperature, and not on the volume of its containing box, so it is not an energy effect that tends to increase the volume of the box as gas pressure does. This implies that the pressure of an ideal gas has an entropic origin. [5] What is the origin of such an entropic force?
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
The term "entropy" has been in use from early in the history of classical thermodynamics, and with the development of statistical thermodynamics and quantum theory, entropy changes have been described in terms of the mixing or "spreading" of the total energy of each constituent of a system over its particular quantized energy levels.
The entropy as a function only of extensive state variables is the one and only cardinal function of state for the generation of Massieu functions. It is not itself customarily designated a 'Massieu function', though rationally it might be thought of as such, corresponding to the term 'thermodynamic potential', which includes the internal energy.
Entropy does not increase indefinitely. A body of matter and radiation eventually will reach an unchanging state, with no detectable flows, and is then said to be in a state of thermodynamic equilibrium. Thermodynamic entropy has a definite value for such a body and is at its maximum value.
Here, entropy is a measure of the increase or decrease in the novelty of information. Path flows of novel information show a familiar pattern. They tend to increase or decrease the number of possible outcomes in the same way that measures of thermodynamic entropy increase or decrease the state space.