Search results
Results from the WOW.Com Content Network
Ribenboim defines a triply palindromic prime as a prime p for which: p is a palindromic prime with q digits, where q is a palindromic prime with r digits, where r is also a palindromic prime. [5] For example, p = 10 11310 + 4661664 × 10 5652 + 1, which has q = 11311 digits, and 11311 has r = 5 digits. The first (base-10) triply palindromic ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
Composite numbers can be arranged into rectangles but prime numbers cannot. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number.
101 is the main Police Emergency Number in Belgium. 101 is the Single Non-Emergency Number (SNEN) in some parts of the UK, a telephone number used to call emergency services that are urgent but not emergencies. 101 is now available across all areas of England and Wales. [7] [8] In technology:
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
[1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. [3] [4] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself.
Inputs: n: a value to test for primality, n>3; k: a parameter that determines the number of times to test for primality Output: composite if n is composite, otherwise probably prime Repeat k times: Pick a randomly in the range [2, n − 2] If (), then return composite
Input #1: n > 2, an odd integer to be tested for primality Input #2: k, the number of rounds of testing to perform Output: (“multiple of”, m) if a nontrivial factor m of n is found, “composite” if n is otherwise found to be composite, “probably prime” otherwise