Ads
related to: particle size analyzer theory
Search results
Results from the WOW.Com Content Network
The particle size measurement is typically achieved by means of devices, called Particle Size Analyzers (PSA), which are based on different technologies, such as high definition image processing, analysis of Brownian motion, gravitational settling of the particle and light scattering (Rayleigh and Mie scattering) of the particles.
Laser diffraction analysis is originally based on the Fraunhofer diffraction theory, stating that the intensity of light scattered by a particle is directly proportional to the particle size. [4] The angle of the laser beam and particle size have an inversely proportional relationship, where the laser beam angle increases as particle size ...
The particle size distribution can also be obtained using the autocorrelation function. However, polydisperse samples are not well resolved by the cumulant fit analysis. Thus, the combination of non-negative least squares (NNLS) algorithms with regularization methods, such as the Tikhonov regularization , can be used to resolve multimodal ...
Mie theory is often applied in laser diffraction analysis to inspect the particle sizing effect. [28] While early computers in the 1970s were only able to compute diffraction data with the more simple Fraunhofer approximation, Mie is widely used since the 1990s and officially recommended for particles below 50 micrometers in guideline ISO 13320 ...
The Weibull distribution or Rosin–Rammler distribution is a useful distribution for representing particle size distributions generated by grinding, milling and crushing operations. The log-hyperbolic distribution was proposed by Bagnold and Barndorff-Nielsen [9] to model the particle-size distribution of naturally occurring sediments. This ...
A sieve analysis (or gradation test) is a practice or procedure used in geology, civil engineering, [1] and chemical engineering [2] to assess the particle size distribution (also called gradation) of a granular material by allowing the material to pass through a series of sieves of progressively smaller mesh size and weighing the amount of material that is stopped by each sieve as a fraction ...
The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer.
Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes and characteristic distances of partially ordered materials. [1]
Ads
related to: particle size analyzer theory