Search results
Results from the WOW.Com Content Network
The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts.
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
Hypoxic air technology for fire prevention, also known as oxygen reduction system (ORS), is an active fire protection technique based on a permanent reduction of the oxygen concentration in the protected rooms. Unlike traditional fire suppression systems that usually extinguish fire after it is detected, hypoxic air is able to prevent fire.
Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil . The process of complete nitrification may occur through separate organisms [ 1 ] or entirely within one organism, as in comammox bacteria.
The formal oxidation state of the nitrogen atom in nitrite is +3. This means that it can be either oxidized to oxidation states +4 and +5, or reduced to oxidation states as low as −3. Standard reduction potentials for reactions directly involving nitrous acid are shown in the table below: [4]
Oxidation states are typically represented by integers which may be positive, zero, or negative. In some cases, the average oxidation state of an element is a fraction, such as 8 / 3 for iron in magnetite Fe 3 O 4 . The highest known oxidation state is reported to be +9, displayed by iridium in the tetroxoiridium(IX) cation (IrO + 4). [1]
A reducing flame is a flame with insufficient oxygen. It has an opaque yellow or orange color due to carbon or hydrocarbons [3] which bind with (or reduce) the oxygen contained in the materials the flame processes. [2]
Bismuth(III) nitrate is a salt composed of bismuth in its cationic +3 oxidation state and nitrate anions. The most common solid form is the pentahydrate. [3] It is used in the synthesis of other bismuth compounds. [4] It is available commercially. It is the only nitrate salt formed by a group 15 element, indicative of bismuth's metallic nature. [5]