Search results
Results from the WOW.Com Content Network
Methemoglobin cannot bind oxygen, which means it cannot carry oxygen to tissues. It is bluish chocolate-brown in color. It is bluish chocolate-brown in color. In human blood a trace amount of methemoglobin is normally produced spontaneously, but when present in excess the blood becomes abnormally dark bluish brown.
The binding of oxygen to methemoglobin results in an increased affinity for oxygen in the remaining heme sites that are in ferrous state within the same tetrameric hemoglobin unit. [17] This leads to an overall reduced ability of the red blood cell to release oxygen to tissues, with the associated oxygen–hemoglobin dissociation curve ...
This causes a leftward shift in the oxygen hemoglobin dissociation curve, as any residual heme with oxygenated ferrous iron (+2 state) is unable to unload its bound oxygen into tissues (because 3+ iron impairs hemoglobin's cooperativity), thereby increasing its affinity with oxygen. However, methemoglobin has increased affinity for cyanide, and ...
Initial oxidation to the ferric (Fe 3+) state without oxygen converts hemoglobin into "hemiglobin" or methemoglobin, which cannot bind oxygen. Hemoglobin in normal red blood cells is protected by a reduction system to keep this from happening. Nitric oxide is capable of converting a small fraction of hemoglobin to methemoglobin in red blood cells.
The decreased binding to carbon dioxide in the blood due to increased oxygen levels is known as the Haldane effect, and is important in the transport of carbon dioxide from the tissues to the lungs. A rise in the partial pressure of CO 2 or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the Bohr effect.
Methemoglobinemia is a condition caused by elevated levels of methemoglobin in the blood. Methaemoglobin is a form of hemoglobin that contains the ferric [Fe 3+] form of iron, instead of the ferrous [Fe 2+] form . Methemoglobin cannot bind oxygen, which means it cannot carry oxygen to tissues.
In living organisms, because methemoglobin (MetHb) is unable to bind oxygen, it must be reduced to hemoglobin (Hb) through the action of the soluble isoform of cytochrome b5 reductase. Overall, the mechanics of this reaction include electron transfer through oxidation steps, which can be accomplished through a couple of different mechanisms ...
However, during hyper-hemolytic conditions or with chronic hemolysis, haptoglobin is depleted so the remaining free hemoglobin readily distribute to tissues where it might be exposed to oxidative conditions, [2] thus some of the ferrous heme (FeII), the oxygen-binding component of hemoglobin, of the free hemoglobin are oxidized and becoming met ...