Search results
Results from the WOW.Com Content Network
Alanine and Cori cycles. The Cahill cycle, also known as the alanine cycle or glucose-alanine cycle, [1] is the series of reactions in which amino groups and carbons from muscle are transported to the liver. [2] It is quite similar to the Cori cycle in the cycling of nutrients between skeletal muscle and the liver. [1]
As an example, consider alanine. Alanine is a glucogenic amino acid that the liver's gluconeogenesis process can use to produce glucose. Muscle cells break down their protein when their blood glucose levels fall, which happens during fasting or periods of intense exercise. The breakdown process releases alanine, which is then transferred to the ...
The leucine synthesis pathway diverges from the valine pathway beginning with α-ketoisovalerate. α-Isopropylmalate synthase catalyzes this condensation with acetyl CoA to produce α-isopropylmalate. An isomerase converts α-isopropylmalate to β-isopropylmalate.
Gluconeogenesis is a pathway consisting of a series of eleven enzyme-catalyzed reactions. The pathway will begin in either the liver or kidney, in the mitochondria or cytoplasm of those cells, this being dependent on the substrate being used. Many of the reactions are the reverse of steps found in glycolysis. [citation needed]
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.
The oxidation pathway starts with the removal of the amino group by a transaminase; the amino group is then fed into the urea cycle. The other product of transamidation is a keto acid that enters the citric acid cycle. [79] Glucogenic amino acids can also be converted into glucose, through gluconeogenesis. [80]
Proteases also help to regulate metabolic pathways. One way they do this is to cleave enzymes in pathways that do not need to be running (i.e. gluconeogenesis when blood glucose concentrations are high). This helps to conserve as much energy as possible and to avoid futile cycles. Futile cycles occur when the catabolic and anabolic pathways are ...
Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...