enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    In this case, the ellipsoid is invariant under a rotation around the third axis, and there are thus infinitely many ways of choosing the two perpendicular axes of the same length. If the third axis is shorter, the ellipsoid is an oblate spheroid; if it is longer, it is a prolate spheroid. If the three axes have the same length, the ellipsoid is ...

  3. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    Spheroid. A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry. If the ellipse is rotated about its major axis, the result is a prolate ...

  4. Birefringence - Wikipedia

    en.wikipedia.org/wiki/Birefringence

    Thus there is no axis around which a rotation leaves the optical properties invariant (as there is with uniaxial crystals whose index ellipsoid is a spheroid). Although there is no axis of symmetry, there are two optical axes or binormals which are defined as directions along which light may propagate without birefringence, i.e., directions ...

  5. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    Paraboloid. In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola.

  6. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    The Cartesian coordinates of P are roughly (1.09, −1.89, 1.66). Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are ...

  7. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The point E is an arbitrary point on the parabola. The focus is F, the vertex is A (the origin), and the line FA is the axis of symmetry. The line EC is parallel to the axis of symmetry, intersects the x axis at D and intersects the directrix at C. The point B is the midpoint of the line segment FC.

  8. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    Poinsot's ellipsoid. In classical mechanics, Poinsot's construction (after Louis Poinsot) is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants: the kinetic energy of the body and the three components of ...

  9. Prolate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Prolate_spheroidal_coordinates

    Prolate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the focal axis of the ellipse, i.e., the symmetry axis on which the foci are located. Rotation about the other axis produces oblate spheroidal coordinates.