enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/HardyWeinberg_principle

    Each line shows one of the three possible genotypes. In population genetics, the HardyWeinberg principle, also known as the HardyWeinberg equilibrium, model, theorem, or law, states that allele and genotype frequencies in a population will remain constant from generation to generation in the absence of other evolutionary influences.

  3. Genetic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Genetic_equilibrium

    Genetic equilibrium describes a theoretical state that is the basis for determining whether and in what ways populations may deviate from it. HardyWeinberg equilibrium is one theoretical framework for studying genetic equilibrium. It is commonly studied using models that take as their assumptions those of Hardy-Weinberg, meaning: No gene ...

  4. Genotype frequency - Wikipedia

    en.wikipedia.org/wiki/Genotype_frequency

    The HardyWeinberg law describes the relationship between allele and genotype frequencies when a population is not evolving. Let's examine the HardyWeinberg equation using the population of four-o'clock plants that we considered above: if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1.

  5. Allele frequency - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency

    Allele frequency. Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.

  6. Panmixia - Wikipedia

    en.wikipedia.org/wiki/Panmixia

    In simple terms, panmixia (or panmicticism) is the ability of individuals in a population to interbreed without restrictions; individuals are able to move about freely within their habitat, possibly over a range of hundreds to thousands of miles, and thus breed with other members of the population. To signify the importance of this, imagine ...

  7. Wahlund effect - Wikipedia

    en.wikipedia.org/wiki/Wahlund_effect

    In population genetics, the Wahlund effect is a reduction of heterozygosity (that is when an organism has two different alleles at a locus) in a population caused by subpopulation structure. Namely, if two or more subpopulations are in a HardyWeinberg equilibrium but have different allele frequencies, the overall heterozygosity is reduced ...

  8. Genetic drift - Wikipedia

    en.wikipedia.org/wiki/Genetic_drift

    Evolutionary biology. Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, [1] is the change in the frequency of an existing gene variant (allele) in a population due to random chance. [2] Genetic drift may cause gene variants to disappear completely and thereby reduce genetic variation. [3]

  9. Balancing selection - Wikipedia

    en.wikipedia.org/wiki/Balancing_selection

    Values for heterozygote inversions of the third chromosome were often much higher than they should be under the null assumption: if no advantage for any form the number of heterozygotes should conform to N s (number in sample) = p 2 +2pq+q 2 where 2pq is the number of heterozygotes (see HardyWeinberg equilibrium).