enow.com Web Search

  1. Ads

    related to: 6x24 tile patterns

Search results

  1. Results from the WOW.Com Content Network
  2. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    Penrose tiling. A Penrose tiling is an example of an aperiodic tiling. Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches. However, despite their lack of translational symmetry, Penrose tilings may have both ...

  3. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    Properties. face-transitive. In geometry, a Cairo pentagonal tiling is a tessellation of the Euclidean plane by congruent convex pentagons, formed by overlaying two tessellations of the plane by hexagons and named for its use as a paving design in Cairo. It is also called MacMahon's net[1] after Percy Alexander MacMahon, who depicted it in his ...

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries. A periodic tiling has a repeating pattern. Some special kinds include regular tilings with regular ...

  5. Tilings and patterns - Wikipedia

    en.wikipedia.org/wiki/Tilings_and_patterns

    978-0-716-71193-3. OCLC. 13092426. Dewey Decimal. 511.6. LC Class. QA166.8.G78. Tilings and patterns is a book by mathematicians Branko Grünbaum and Geoffrey Colin Shephard published in 1987 by W.H. Freeman. The book was 10 years in development, and upon publication it was widely reviewed and highly acclaimed.

  6. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    Pentagonal tiling. The 15th monohedral convex pentagonal type, discovered in 2015. In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not a divisor of 360 ...

  7. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    Euclidean tilings are usually named after Cundy & Rollett’s notation. [1] This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types ...

  1. Ads

    related to: 6x24 tile patterns