Search results
Results from the WOW.Com Content Network
The Sun is gradually becoming hotter in its core, hotter at the surface, larger in radius, and more luminous during its time on the main sequence: since the beginning of its main sequence life, it has expanded in radius by 15% and the surface has increased in temperature from 5,620 K (9,660 °F) to 5,772 K (9,930 °F), resulting in a 48% ...
The core of the Sun is considered to extend from the center to about 0.2 of the solar radius (139,000 km; 86,000 mi). [1] It is the hottest part of the Sun and of the Solar System. It has a density of 150,000 kg/m 3 (150 g/cm 3) at the center, and a temperature of 15 million Kelvin (15 million degrees Celsius; 27 million degrees Fahrenheit). [2]
In the Sun, the region between the solar core at 0.2 of the Sun's radius and the outer convection zone at 0.71 of the Sun's radius is referred to as the radiation zone, although the core is also a radiative region. [1] The convection zone and the radiative zone are divided by the tachocline, another part of the Sun.
At fixed latitude, the size of the seasonal difference in sun angle (and thus the seasonal temperature variation) is equal to double the Earth's axial tilt. For example, with an axial tilt is 23°, and at a latitude of 45°, then the summer's peak sun angle is 68° (giving sin(68°) = 93% insolation at the surface), while winter's least sun ...
The surface abundance of Li on the Sun is 140 times less than the protosolar value (i.e. the primordial abundance at the Sun's birth), [18] yet the temperature at the base of the surface convective zone is not hot enough to burn – and hence deplete – Li. [19] This is known as the solar lithium problem.
The approximate temperature in the solar atmosphere plotted against height The solar transition region is a region of the Sun 's atmosphere between the upper chromosphere and corona . [ 1 ] [ 2 ] It is important because it is the site of several unrelated but important transitions in the physics of the solar atmosphere:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...