Search results
Results from the WOW.Com Content Network
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The kilogram per cubic metre (symbol: kg·m −3, or kg/m 3) is the unit of density in the International System of Units (SI). It is defined by dividing the SI unit of mass, the kilogram, by the SI unit of volume, the cubic metre. [1]
Densities using the following metric units all have exactly the same numerical value, one thousandth of the value in (kg/m 3). Liquid water has a density of about 1 kg/dm 3, making any of these SI units numerically convenient to use as most solids and liquids have densities between 0.1 and 20 kg/dm 3. kilogram per cubic decimetre (kg/dm 3)
= 1000 kg/m 3: kilogram per cubic metre (SI unit) kg/m 3: ≡ kg/m 3 = 1 kg/m 3: kilogram per litre kg/L ≡ kg/L = 1000 kg/m 3: ounce (avoirdupois) per cubic foot oz/ft 3: ≡ oz/ft 3: ≈ 1.001 153 961 kg/m 3: ounce (avoirdupois) per cubic inch oz/in 3: ≡ oz/in 3: ≈ 1.729 994 044 × 10 3 kg/m 3: ounce (avoirdupois) per gallon (imperial ...
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...
In physics and engineering, mass flux is the rate of mass flow per unit of area. Its SI units are kg ⋅ s −1 ⋅ m −2. The common symbols are j, J, q, Q, φ, or Φ (Greek lowercase or capital Phi), sometimes with subscript m to indicate mass is the flowing quantity. This flux quantity is also known simply as "mass flow". [1] "
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
The bulk density of soil depends greatly on the mineral make up of soil and the degree of compaction. [3] The density of quartz is around 2.65 g/cm 3 but the (dry) bulk density of a mineral soil is normally about half that density, between 1.0 and 1.6 g/cm 3.