enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    On the other hand, the internally studentized residuals are in the range , where ν = n − m is the number of residual degrees of freedom. If t i represents the internally studentized residual, and again assuming that the errors are independent identically distributed Gaussian variables, then: [2]

  3. DFFITS - Wikipedia

    en.wikipedia.org/wiki/DFFITS

    DFFITS is the Studentized DFFIT, ... DFFITS also equals the products of the externally Studentized residual (() ) and the leverage ...

  4. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...

  5. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    where is the index of independent variable, is the index of observation and [] are the residuals from regressing against the remaining independent variables. Note that the partial leverage is the leverage of the i t h {\displaystyle {i}^{th}} point in the partial regression plot for the j t h {\displaystyle {j}^{th}} variable.

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    However, a question arises as to which residuals to resample. Raw residuals are one option; another is studentized residuals (in linear regression). Although there are arguments in favor of using studentized residuals; in practice, it often makes little difference, and it is easy to compare the results of both schemes.

  7. Cook's distance - Wikipedia

    en.wikipedia.org/wiki/Cook's_distance

    In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...

  8. 'I prefer across the board': Trump's top tariff man favors ...

    www.aol.com/finance/prefer-across-board-trumps...

    Donald Trump's pick for Commerce secretary underlined that broad country-by-country tariffs can be used to address a host of economic issues, including the protection of America's artificial ...

  9. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Using matrix notation, the sum of squared residuals is given by S ( β ) = ( y − X β ) T ( y − X β ) . {\displaystyle S(\beta )=(y-X\beta )^{T}(y-X\beta ).} Since this is a quadratic expression, the vector which gives the global minimum may be found via matrix calculus by differentiating with respect to the vector β {\displaystyle \beta ...