enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.

  3. Verification and validation of computer simulation models

    en.wikipedia.org/wiki/Verification_and...

    The model is viewed as an input-output transformation for these tests. The validation test consists of comparing outputs from the system under consideration to model outputs for the same set of input conditions. Data recorded while observing the system must be available in order to perform this test. [3]

  4. Group method of data handling - Wikipedia

    en.wikipedia.org/wiki/Group_method_of_data_handling

    First, we split the full dataset into two parts: a training set and a validation set. The training set would be used to fit more and more model parameters, and the validation set would be used to decide which parameters to include, and when to stop fitting completely. The GMDH starts by considering degree-2 polynomial in 2 variables.

  5. Informal methods of validation and verification - Wikipedia

    en.wikipedia.org/wiki/Informal_methods_of...

    Inspection is a verification method that is used to compare how correctly the conceptual model matches the executable model. Teams of experts, developers, and testers will thoroughly scan the content (algorithms, programming code, documents, equations) in the original conceptual model and compare with the appropriate counterpart to verify how closely the executable model matches. [1]

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Data validation - Wikipedia

    en.wikipedia.org/wiki/Data_validation

    Data validation is intended to provide certain well-defined guarantees for fitness and consistency of data in an application or automated system. Data validation rules can be defined and designed using various methodologies, and be deployed in various contexts. [1]

  8. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Cross-validation includes resampling and sample splitting methods that use different portions of the data to test and train a model on different iterations. It is often used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice. It can also be used to assess the quality of ...

  9. Verification and validation - Wikipedia

    en.wikipedia.org/wiki/Verification_and_validation

    Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.