Search results
Results from the WOW.Com Content Network
In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division). [2]
Integral types may be unsigned (capable of representing only non-negative integers) or signed (capable of representing negative integers as well). [1] An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. Some programming languages allow other notations, such as ...
These symbols are collectively called factorial powers. [2] The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer. It may represent either the rising or the falling factorial, with different articles and authors using different conventions.
An exponential-Golomb code (or just Exp-Golomb code) is a type of universal code. To encode any nonnegative integer x using the exp-Golomb code: Write down x+1 in binary; Count the bits written, subtract one, and write that number of starting zero bits preceding the previous bit string. The first few values of the code are:
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =
In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n, = ⌊ ⌋. For example, isqrt ( 27 ) = ⌊ 27 ⌋ = ⌊ 5.19615242270663... ⌋ = 5. {\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor ...
Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits.The name refers to the bijection (i.e. one-to-one correspondence) that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols (the "digits").