enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In mathematics, the result of the modulo operation is an equivalence class, and any member of the class may be chosen as representative; however, the usual representative is the least positive residue, the smallest non-negative integer that belongs to that class (i.e., the remainder of the Euclidean division). [2]

  3. Integer (computer science) - Wikipedia

    en.wikipedia.org/wiki/Integer_(computer_science)

    Integral types may be unsigned (capable of representing only non-negative integers) or signed (capable of representing negative integers as well). [1] An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. Some programming languages allow other notations, such as ...

  4. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    These symbols are collectively called factorial powers. [2] The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer. It may represent either the rising or the falling factorial, with different articles and authors using different conventions.

  5. Exponential-Golomb coding - Wikipedia

    en.wikipedia.org/wiki/Exponential-Golomb_coding

    An exponential-Golomb code (or just Exp-Golomb code) is a type of universal code. To encode any nonnegative integer x using the exp-Golomb code: Write down x+1 in binary; Count the bits written, subtract one, and write that number of starting zero bits preceding the previous bit string. The first few values of the code are:

  6. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.

  7. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  8. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n, ⁡ = ⌊ ⌋. For example, isqrt ⁡ ( 27 ) = ⌊ 27 ⌋ = ⌊ 5.19615242270663... ⌋ = 5. {\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor ...

  9. Bijective numeration - Wikipedia

    en.wikipedia.org/wiki/Bijective_numeration

    Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits.The name refers to the bijection (i.e. one-to-one correspondence) that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols (the "digits").