Search results
Results from the WOW.Com Content Network
Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.
The reaction catalysed by an enzyme uses exactly the same reactants and produces exactly the same products as the uncatalysed reaction. Like other catalysts, enzymes do not alter the position of equilibrium between substrates and products. [1] However, unlike uncatalysed chemical reactions, enzyme-catalysed reactions display saturation kinetics.
Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.
Linear pathways follow a step-by-step sequence, where each enzymatic reaction results in the transformation of a substrate into an intermediate product. This intermediate is processed by subsequent enzymes until the final product is synthesized. A linear chain of four enzyme-catalyzed steps. A linear pathway can be studied in various ways.
The enzyme initially has a conformation that attracts its substrate. Enzyme surface is flexible and only the correct catalyst can induce interaction leading to catalysis. Conformational changes may then occur as the substrate is bound. After the reaction products will move away from the enzyme and the active site returns to its initial shape.
Catalysis may be classified as either homogeneous, whose components are dispersed in the same phase (usually gaseous or liquid) as the reactant, or heterogeneous, whose components are not in the same phase. Enzymes and other biocatalysts are often considered as a third category. Catalysis is ubiquitous in chemical industry of all kinds. [6]
In enzymology, the turnover number (k cat) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [E T] for enzymes with two or more active sites. [1] For enzymes with a single active site, k cat is referred to as the catalytic constant. [2]
General reaction that is catalyzed by kinases. Kinases mediate the transfer of a phosphate moiety from a high energy molecule (such as ATP) to their substrate molecule, as seen in the figure below. Kinases are needed to stabilize this reaction because the phosphoanhydride bond contains a high level of energy. Kinases properly orient their ...