Search results
Results from the WOW.Com Content Network
The coefficient of lift for a two-dimensional airfoil section with strictly horizontal surfaces can be calculated from the coefficient of pressure distribution by integration, or calculating the area between the lines on the distribution. This expression is not suitable for direct numeric integration using the panel method of lift approximation ...
The volume of a ship's hull below the waterline (solid), divided by the volume of a rectangular solid (lines) of the same length, height and width, determine a ship's block coefficient. Coefficients [5] help compare hull forms as well: Block coefficient (C b) is the volume (V) divided by the L WL × B WL × T WL. If you draw a box around the ...
This is understood to be a function of the Block coefficient of the vessel concerned, finer lined vessels Cb <0.7 squatting by the stern and vessels with a Cb >0.7 squatting by the head or bow. [ 1 ] Squat effect is approximately proportional to the square of the speed of the ship.
The total amount of water to be displaced by a moving hull, and thus causing wave making drag, is the cross sectional area of the hull times distance the hull travels, and will not remain the same when prismatic coefficient is increased for the same lwl and same displacement and same speed.
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as
Pressure used in boilers of steam locomotives [citation needed] 1.1 MPa 162 psi Pressure of an average human bite [citation needed] 2.8–8.3 MPa 400–1,200 psi Pressure of carbon dioxide propellant in a paintball gun [64] 5 MPa 700 psi Water pressure of the output of a coin-operated car wash spray nozzle [58] 5 MPa 700 psi
The proportionality coefficient is the dimensionless "Darcy friction factor" or "flow coefficient". This dimensionless coefficient will be a combination of geometric factors such as π , the Reynolds number and (outside the laminar regime) the relative roughness of the pipe (the ratio of the roughness height to the hydraulic diameter ).
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.