Search results
Results from the WOW.Com Content Network
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
An example of this phenomenon is when clean air scatters blue light more than red light, and so the midday sky appears blue (apart from the area around the Sun which appears white because the light is not scattered as much). The optical window is also referred to as the "visible window" because it overlaps the human visible response spectrum.
English: The harmonics of lightwaves drawn to scale, showing how the different waves interact with each other. The λ/2 (1/2 wavelength) harmonics are perfectly in sync with each other, but all other colors in the visual spectrum fall between λ and λ/2.
The weakness of the wave theory was that light waves, like sound waves, would need a medium for transmission. The existence of the hypothetical substance luminiferous aether proposed by Huygens in 1678 was cast into strong doubt in the late nineteenth century by the Michelson–Morley experiment .
A standing wave, also known as a stationary wave, is a wave whose envelope remains in a constant position. This phenomenon arises as a result of interference between two waves traveling in opposite directions. The sum of two counter-propagating waves (of equal amplitude and frequency) creates a standing wave. Standing waves commonly arise when ...
The stationary wave can be viewed as the sum of two traveling sinusoidal waves of oppositely directed velocities. [8] Consequently, wavelength, period, and wave velocity are related just as for a traveling wave. For example, the speed of light can be determined from observation of standing waves in a metal box containing an ideal vacuum.
[1] [2] Soon the term referred to a plot of light intensity or power as a function of frequency or wavelength, also known as a spectral density plot. Later it expanded to apply to other waves, such as sound waves and sea waves that could also be measured as a function of frequency (e.g., noise spectrum, sea wave spectrum).
The wavelength of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium.