enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bessel function - Wikipedia

    en.wikipedia.org/wiki/Bessel_function

    Bessel functions describe the radial part of vibrations of a circular membrane.. Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation + + = for an arbitrary complex number, which represents the order of the Bessel function.

  3. Bessel polynomials - Wikipedia

    en.wikipedia.org/wiki/Bessel_polynomials

    In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. There are a number of different but closely related definitions.

  4. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    Each function () of this basis consists of the product of three functions: (;,,) = (,) (,) where (,,) are the cylindrical coordinates, and n and k constants that differentiate the members of the set. As a result of the superposition principle applied to Laplace's equation, very general solutions to Laplace's equation can be obtained by linear ...

  5. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    Several sets of orthogonal functions have become standard bases for approximating functions. For example, the sine functions sin nx and sin mx are orthogonal on the interval x ∈ ( − π , π ) {\displaystyle x\in (-\pi ,\pi )} when m ≠ n {\displaystyle m\neq n} and n and m are positive integers.

  6. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The orthogonality and completeness of this set of solutions follows at once from the larger framework of Sturm–Liouville theory. The differential equation admits another, non-polynomial solution, the Legendre functions of the second kind. A two-parameter generalization of (Eq.

  7. Fourier–Bessel series - Wikipedia

    en.wikipedia.org/wiki/Fourier–Bessel_series

    The Fourier–Bessel series of a function f(x) with a domain of [0, b] satisfying f(b) = 0. Bessel function for (i) = and (ii) =.: [,] is the representation of that function as a linear combination of many orthogonal versions of the same Bessel function of the first kind J α, where the argument to each version n is differently scaled, according to [1] [2] ():= (,) where u α,n is a root ...

  8. C H E L S E A G R E E N P U B L I S H I N G W H I T E R I V E ...

    images.huffingtonpost.com/2007-09-10-EOA...

    %PDF-1.5 %âãÏÓ 100 0 obj > endobj xref 100 62 0000000016 00000 n 0000002402 00000 n 0000002539 00000 n 0000001570 00000 n 0000002637 00000 n 0000002762 00000 n 0000003272 00000 n 0000003519 00000 n 0000003561 00000 n 0000004173 00000 n 0000005340 00000 n 0000005569 00000 n 0000005954 00000 n 0000006116 00000 n 0000006328 00000 n 0000006538 ...

  9. Jackson q-Bessel function - Wikipedia

    en.wikipedia.org/wiki/Jackson_q-Bessel_function

    In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by Jackson (1906a, 1906b, 1905a, 1905b). The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.