Search results
Results from the WOW.Com Content Network
The mass/luminosity relationship can also be used to determine the lifetime of stars by noting that lifetime is approximately proportional to M/L although one finds that more massive stars have shorter lifetimes than that which the M/L relationship predicts. A more sophisticated calculation factors in a star's loss of mass over time.
The mass, radius, and luminosity of a star are closely interlinked, and their respective values can be approximated by three relations. First is the Stefan–Boltzmann law, which relates the luminosity L, the radius R and the surface temperature T eff. Second is the mass–luminosity relation, which relates the luminosity L and the mass M.
Blue and white supergiants are high luminosity stars somewhat cooler than the most luminous main sequence stars. A star like Deneb, for example, has a luminosity around 200,000 L ⊙, a spectral type of A2, and an effective temperature around 8,500 K, meaning it has a radius around 203 R ☉ (1.41 × 10 11 m).
Following Resolution B2, the relation between a star's absolute bolometric magnitude and its luminosity is no longer directly tied to the Sun's (variable) luminosity: = + where L ★ is the star's luminosity (bolometric luminosity) in watts
Since the magnitude of a star varies with its age, the determination of mass-luminosity relation should also take into account its age. For stars with masses above 0.7 M ☉, it takes more than 10 billion years for their magnitude to increase substantially. For low-mass stars with below 0.13 M ☉, it takes 5 × 10 8 years to reach main ...
Asymptotic giant branch – Stars powered by fusion of hydrogen and helium in shell with an inactive core of carbon and oxygen; Galaxy color–magnitude diagram – Chart depicting the relationship between brightness and mass of large star systems; Hayashi track – Luminosity–temperature relationship in stars
In astronomy, a period-luminosity relation is a relationship linking the luminosity of pulsating variable stars with their pulsation period. The best-known relation is the direct proportionality law holding for Classical Cepheid variables , sometimes called the Leavitt Law .
The greater a star's luminosity, the greater its mass will be. The absolute magnitude or luminosity of a star can be found by knowing the distance to it and its apparent magnitude. The stars bolometric magnitude is plotted against its mass, in units of the Sun's mass. This is determined through observation and then the mass of the star is read ...