Search results
Results from the WOW.Com Content Network
In quantum mechanics, fractionalization is the phenomenon whereby the quasiparticles of a system cannot be constructed as combinations of its elementary constituents. One of the earliest and most prominent examples is the fractional quantum Hall effect, where the constituent particles are electrons but the quasiparticles carry fractions of the electron charge.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The fractional Schrödinger equation, a fundamental equation of fractional quantum mechanics, has the following form: [69] [70] (,) = (,) + (,) (,). where the solution of the equation is the wavefunction ψ ( r , t ) – the quantum mechanical probability amplitude for the particle to have a given position vector r at any given time t , and ħ ...
The quantum Hall effect is referred to as the integer or fractional quantum Hall effect depending on whether ν is an integer or fraction, respectively. The striking feature of the integer quantum Hall effect is the persistence of the quantization (i.e. the Hall plateau) as the electron density is varied.
The fractional quantum Hall effect (FQHE) is a collective behavior in a 2D system of electrons. In particular magnetic fields, the electron gas condenses into a remarkable liquid state, which is very delicate, requiring high quality material with a low carrier concentration, and extremely low temperatures.
The h-calculus is the calculus of finite differences, which was studied by George Boole and others, and has proven useful in combinatorics and fluid mechanics. In a sense, q -calculus dates back to Leonhard Euler and Carl Gustav Jacobi , but has only recently begun to find usefulness in quantum mechanics , given its intimate connection with ...
Quantum mechanics prohibits it in a uniform ordinary superconductor, but it becomes possible in an inhomogeneous system, for example, if a vortex is placed on a boundary between two superconductors which are connected only by an extremely weak link (also called a Josephson junction); such a situation also occurs on grain boundaries etc. At such ...
The statistical mechanics of large many-body systems obeys laws described by Maxwell–Boltzmann statistics. Quantum statistics is more complicated because of the different behaviors of two different kinds of particles called fermions and bosons.