Search results
Results from the WOW.Com Content Network
Electric dipole p and its torque τ in a uniform E field. An object with an electric dipole moment p is subject to a torque τ when placed in an external electric field E. The torque tends to align the dipole with the field. A dipole aligned parallel to an electric field has lower potential energy than a
Electric potential energy is a potential energy (measured in joules) that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system.
The electron may also have an electric dipole moment though such has yet to be observed (see electron electric dipole moment). Contour plot of the electrostatic potential of a horizontally oriented electrical dipole of infinitesimal size. Strong colors indicate highest and lowest potential (where the opposing charges of the dipole are located).
In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.
An electric field (sometimes called E-field [1]) is the physical field that surrounds electrically charged particles.Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same.
Informally, the case of a point charge in an arbitrary static electric field is a simple consequence of Gauss's law.For a particle to be in a stable equilibrium, small perturbations ("pushes") on the particle in any direction should not break the equilibrium; the particle should "fall back" to its previous position.
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
The electron electric dipole moment d e is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field: U = − d e ⋅ E . {\displaystyle U=-\mathbf {d} _{\rm {e}}\cdot \mathbf {E} .}