enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Electric_dipole_moment

    A dipole aligned parallel to an electric field has lower potential energy than a dipole making some ... which is the potential due to applied ...

  3. Dipole - Wikipedia

    en.wikipedia.org/wiki/Dipole

    The resulting torque will tend to align the dipole with the applied field, which in the case of an electric dipole, yields a potential energy of U = − p ⋅ E {\displaystyle U=-\mathbf {p} \cdot \mathbf {E} } .

  4. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations. Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly ...

  7. Electron electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Electron_electric_dipole...

    The electron electric dipole moment d e is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field: U = − d e ⋅ E . {\displaystyle U=-\mathbf {d} _{\rm {e}}\cdot \mathbf {E} .}

  8. Magnetic dipole - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipole

    Monopole moments have a 1/r rate of decrease, dipole moments have a 1/r 2 rate, quadrupole moments have a 1/r 3 rate, and so on. The higher the order, the faster the potential drops off. Since the lowest-order term observed in magnetic sources is the dipole term, it dominates at large distances.

  9. Magnetic dipole–dipole interaction - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipoledipole...

    It follows that the dipole-dipole interaction goes as the inverse fourth power of the distance. Suppose m 1 and m 2 are two magnetic dipole moments that are far enough apart that they can be treated as point dipoles in calculating their interaction energy. The potential energy H of the interaction is then given by: