enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solar rotation - Wikipedia

    en.wikipedia.org/wiki/Solar_rotation

    At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).

  3. Solar coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Solar_coordinate_systems

    The two most commonly used systems are the Stonyhurst and Carrington systems. They both define latitude as the angular distance from the solar equator, but differ in how they define longitude. In Stonyhurst coordinates, the longitude is fixed for an observer on Earth, and, in Carrington coordinates, the longitude is fixed for the Sun's rotation.

  4. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.

  5. Equatorial bulge - Wikipedia

    en.wikipedia.org/wiki/Equatorial_bulge

    Estimates of the Earth's rotation 500 million years ago are around 20 modern hours per "day". The Earth's rate of rotation is slowing down mainly because of tidal interactions with the Moon and the Sun. Since the solid parts of the Earth are ductile, the Earth's equatorial bulge has been decreasing in step with the decrease in the rate of rotation.

  6. Sun - Wikipedia

    en.wikipedia.org/wiki/Sun

    The Sun rotates faster at its equator than at its poles. This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at the poles.

  7. Earth - Wikipedia

    en.wikipedia.org/wiki/Earth

    [2] [n 10] Earth's rotation period relative to the precessing or moving mean March equinox (when the Sun is at 90° on the equator), is 86,164.0905 seconds of mean solar time (UT1) (23 h 56 m 4.0905 s). [2] Thus the sidereal day is shorter than the stellar day by about 8.4 ms. [159]

  8. Equator - Wikipedia

    en.wikipedia.org/wiki/Equator

    The Equator during the boreal winter, spanning from December to March. The equator is a circle of latitude that divides a spheroid, such as Earth, into the Northern and Southern hemispheres. On Earth, the Equator is an imaginary line located at 0 degrees latitude, about 40,075 km (24,901 mi) in circumference, halfway between the North and South ...

  9. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...