enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation . Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is ...

  3. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The first fundamental theorem may be interpreted as follows. Given a continuous function = whose graph is plotted as a curve, one defines a corresponding "area function" () such that A(x) is the area beneath the curve between 0 and x. The area A(x) may not be easily computable, but it is assumed to be well defined. The area under the curve ...

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Suppose that a function represents the position of an object at the time. The first derivative of that function is the velocity of an object with respect to time, the second derivative of the function is the acceleration of an object with respect to time, [29] and the third derivative is the jerk. [36]

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is determined by considering the limiting value of the slopes of the second lines.

  6. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  7. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  8. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  9. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    Using calculus, it is possible to relate the infinitely small changes of various variables to each other mathematically using derivatives. If y is a function of x, then the differential dy of y is related to dx by the formula =, where denotes not 'dy divided by dx' as one would intuitively read, but 'the derivative of y with respect to x '.