Search results
Results from the WOW.Com Content Network
DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond.It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms (such as DNA ligase IV) may specifically repair double-strand breaks (i.e. a break in both complementary strands of DNA).
DNA ligase 1 also DNA ligase I, is an enzyme that in humans is encoded by the LIG1 gene. DNA ligase 1 is the only known eukaryotic DNA ligase involved in both DNA replication and repair , making it the most studied of the ligases .
The smallest known eukaryotic ligase is Chlorella virus DNA ligase (ChVLig). It contains only 298 amino acids. When ChVLig is the only source of ligase in the cell, it can continue to support mitotic development, and nonhomologous end joining in budding yeasts. [34] DNA Ligase I (Lig1) is accountable for Okazaki Fragments ligation.
For example, DNA ligase can join two complementary fragments of nucleic acid by forming phosphodiester bonds, and repair single stranded breaks that arise in double stranded DNA during replication. In general, a ligase catalyzes the following dehydration reaction, thus joining molecules A and B: A-OH + B-H → A–B + H 2 O
The cleavage is inhibited when the 5’ end of the DNA flap is blocked either with a complementary primer or a biotin-conjugated streptavidin moiety. DNA ligase seals the nick made by the FEN1 and it creates a functional continuous double strand of DNA. PCNA simulates enzymatic functions of proteins for both FEN1 and DNA ligase.
The alternative translation initiation and splicing mechanisms alter the amino- and carboxy-terminal sequences that flank the DNA ligase III catalytic region. [15] [16] In the alternative splicing mechanism, the exon encoding a C-terminal breast cancer susceptibility protein 1 C-terminal domain at the C-terminus of DNA ligase III-alpha is replaced by a short positively charged sequence that ...
Formation of the bond occurs not only in DNA and RNA replication, but also in the repair and recombination of nucleic acids, and may require the involvement of various polymerases, primers, and/or ligases. During the replication of DNA, for example, the DNA polymerase I leaves behind a hole between the phosphates in the newly formed backbone.
After DNA repair factors replace the ribonucleotides of the primer with deoxynucleotides, a single gap remains in the sugar-phosphate backbone between each Okazaki fragment in the lagging duplex. An enzyme called DNA ligase connects the gap in the backbone by forming a phosphodiester bond between each gap that separates the Okazaki fragments ...