Search results
Results from the WOW.Com Content Network
The first question is therefore open only in the infinite case. Call loop Q of Csörgõ type if it is nilpotent of class at least 3, and Inn(Q) is abelian. No loop of Csörgõ type of nilpotency class higher than 3 is known.
A quasigroup with an idempotent element is called a pique ("pointed idempotent quasigroup"); this is a weaker notion than a loop but common nonetheless because, for example, given an abelian group, (A, +), taking its subtraction operation as quasigroup multiplication yields a pique (A, −) with the group identity (zero) turned into a "pointed ...
Talk: List of problems in loop theory and quasigroup theory. Add languages. Page contents not supported in other languages. ... Download as PDF; Printable version
Pages for logged out editors learn more. Contributions; Talk; Problems in loop theory and quasigroup theory
Moufang loops are universal among inverse property loops; that is, a loop Q is a Moufang loop if and only if every loop isotope of Q has the inverse property. It follows that every loop isotope of a Moufang loop is a Moufang loop. One can use inverses to rewrite the left and right Moufang identities in a more useful form:
In its most general form a loop group is a group of continuous mappings from a manifold M to a topological group G.. More specifically, [1] let M = S 1, the circle in the complex plane, and let LG denote the space of continuous maps S 1 → G, i.e.
Two loops a, b in a torus. In mathematics , a loop in a topological space X is a continuous function f from the unit interval I = [0,1] to X such that f (0) = f (1) . In other words, it is a path whose initial point is equal to its terminal point.
Similarly, a set of all smooth maps from S 1 to a Lie group G forms an infinite-dimensional Lie group (Lie group in the sense we can define functional derivatives over it) called the loop group. The Lie algebra of a loop group is the corresponding loop algebra.