enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}

  3. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  4. Reverse Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Reverse_Monte_Carlo

    Hybrid Reverse Monte Carlo (HRMC) [19] [20] is a code capable of fitting both the pair correlation function and structure factor along with bond angle and coordination distributions. Unique to this code is the implementation of a number of empirical interatomic potentials for carbon (EDIP), silicon (EDIP [ 21 ] and Stillinger-Weber [ 22 ] ) and ...

  5. Internal model (motor control) - Wikipedia

    en.wikipedia.org/wiki/Internal_model_(motor_control)

    Inverse model of a reaching task. The arm's desired trajectory, Xref(t), is input into the model, which generates the necessary motor commands, ũ(t), to control the arm. Inverse models use the desired and actual position of the body as inputs to estimate the necessary motor commands which would transform the current position into the desired one.

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In particular, the function f has a differentiable inverse function in a neighborhood of a point x if and only if the Jacobian determinant is nonzero at x (see inverse function theorem for an explanation of this and Jacobian conjecture for a related problem of global invertibility).

  7. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  8. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  9. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the formal residue, and a more direct formal proof is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting ...