Search results
Results from the WOW.Com Content Network
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
The convex conjugate (specifically, the Legendre transform) of the softplus function is the negative binary entropy (with base e).This is because (following the definition of the Legendre transform: the derivatives are inverse functions) the derivative of softplus is the logistic function, whose inverse function is the logit, which is the derivative of negative binary entropy.
An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.
Inverse model of a reaching task. The arm's desired trajectory, Xref(t), is input into the model, which generates the necessary motor commands, ũ(t), to control the arm. Inverse models use the desired and actual position of the body as inputs to estimate the necessary motor commands which would transform the current position into the desired one.
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
A run of a Turing machine. Turing machines, for example, are some of the most fundamental abstract machines in computer science. [2] These machines conduct operations on a tape (a string of symbols) of any length. Their instructions provide for both modifying the symbols and changing the symbol that the machine’s pointer is currently at.
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...