Search results
Results from the WOW.Com Content Network
Acid chlorides can be reduced to give aldehydes with sterically hindered hydride donors. The reducing agent DIBAL-H (diisobutylaluminium hydride) is often used for this purpose, although it normally reduces any carbonyl. DIBAL-H can selectively reduce acid chlorides to the aldehyde level if only one equivalent is used at low temperatures. [12]
The aldehyde can be oxidized via a redox reaction in which another compound is reduced. Thus, aldoses are reducing sugars. Thus, aldoses are reducing sugars. Sugars with ketone groups in their open chain form are capable of isomerizing via a series of tautomeric shifts to produce an aldehyde group in solution.
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
α-Functionalized carbonyl compounds are reduced to afford the corresponding carbonyl compounds. A number of functional groups can be replaced with hydrogen using this method; one transformation that is relatively unique to samarium(II) iodide is the reduction of α-hydroxy ketones and α-hydroxy lactones.
Esters may be reduced to alcohols under conditions of nucleophilic activation with caesium or potassium fluoride. [14] Aldehydes undergo hydrosilylation in the presence of hydrosilanes and fluoride. The resulting silyl ethers can be hydrolyzed with 1 M hydrochloric acid. Optimal yields of the hydrosilylation are obtained when the reaction is ...
The carbonyl group is most commonly a ketone or an aldehyde. It is a common method to make amines and is widely used in green chemistry since it can be done catalytically in one-pot under mild conditions. In biochemistry, dehydrogenase enzymes use reductive amination to produce the amino acid glutamate. Additionally, there is ongoing research ...
The Rosenmund reduction is a hydrogenation process in which an acyl chloride is selectively reduced to an aldehyde. The reaction was named after Karl Wilhelm Rosenmund, who first reported it in 1918. [1] The Rosenmund reduction. The reaction, a hydrogenolysis, is catalysed by palladium on barium sulfate, which is sometimes called the Rosenmund ...
Some amides can be reduced to aldehydes in the Sonn-Müller method, but most routes to aldehydes involve a well-chosen organometallic reductant. Lithium aluminum hydride reduces an excess of N,N-disubstituted amides to an aldehyde: [citation needed] R(CO)NRR' + LiAlH 4 → RCHO + HNRR' With further reduction the alcohol is obtained.