Search results
Results from the WOW.Com Content Network
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past.Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales.
Fundamenta nova theoriae functionum ellipticarum [1] (from Latin: New Foundations of the Theory of Elliptic Functions) is a treatise on elliptic functions by German mathematician Carl Gustav Jacob Jacobi. [2] The book was first published in 1829, and has been reprinted in volume 1 of his collected works and on several later occasions.
The Ars Magna (The Great Art, 1545) is an important Latin-language book on algebra written by Gerolamo Cardano. It was first published in 1545 under the title Artis Magnae, Sive de Regulis Algebraicis Liber Unus (Book number one about The Great Art, or The Rules of Algebra). There was a second edition in Cardano's lifetime, published in 1570.
The history of logarithms is the story of a correspondence (in modern terms, a group isomorphism) between multiplication on the positive real numbers and addition on the real number line that was formalized in seventeenth century Europe and was widely used to simplify calculation until the advent of the digital computer.
Many Greek and Arabic texts on mathematics were translated into Latin from the 12th century onward, leading to further development of mathematics in Medieval Europe. From ancient times through the Middle Ages, periods of mathematical discovery were often followed by centuries of stagnation.
The Liber Abaci or Liber Abbaci [1] (Latin for "The Book of Calculation") was a 1202 Latin work on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. It is primarily famous for introducing both base-10 positional notation and the symbols known as Arabic numerals in Europe.
The 12th century saw a flood of translations from Arabic into Latin and by the 13th century, European mathematics was beginning to rival the mathematics of other lands. In the 13th century, the solution of a cubic equation by Fibonacci is representative of the beginning of a revival in European algebra.
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...