enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  3. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.

  4. Oxygen reduction reaction - Wikipedia

    en.wikipedia.org/wiki/Oxygen_reduction_reaction

    The direct reaction of O 2 with fuel is precluded by the oxygen reduction reaction, which produces water and adenosine triphosphate. Cytochrome c oxidase affects the oxygen reduction reaction by binding O 2 in a heme–Cu complex. In laccase, O 2 is engaged and reduced by a four-copper aggregate.

  5. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: + The reaction quotient (Q r), also often called the ion activity product (IAP), is the ratio between the chemical activities (a) of the reduced form (the reductant, a Red) and the oxidized form (the oxidant, a Ox).

  6. Reducing agent - Wikipedia

    en.wikipedia.org/wiki/Reducing_agent

    In the above equation, the Iron (Fe) has an oxidation number of 0 before and 3+ after the reaction. For oxygen (O) the oxidation number began as 0 and decreased to 2−. These changes can be viewed as two "half-reactions" that occur concurrently: Oxidation half reaction: Fe 0 → Fe 3+ + 3e −; Reduction half reaction: O 2 + 4e − → 2 O 2−

  7. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    In the reaction between hydrogen and fluorine, hydrogen is being oxidized and fluorine is being reduced: H 2 + F 2 → 2 HF. This spontaneous reaction releases 542 kJ per 2 g of hydrogen because the H-F bond is much stronger than the F-F bond. This reaction can be analyzed as two half-reactions. The oxidation reaction converts hydrogen to protons:

  8. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [ 1 ] as ...

  9. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    Oxidation states can be useful for balancing chemical equations for oxidation-reduction (or redox) reactions, because the changes in the oxidized atoms have to be balanced by the changes in the reduced atoms. For example, in the reaction of acetaldehyde with Tollens' reagent to form acetic acid (shown below), the carbonyl carbon atom changes ...