enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Walk-regular graph - Wikipedia

    en.wikipedia.org/wiki/Walk-regular_graph

    In graph theory, a walk-regular graph is a simple graph where the number of closed walks of any length from a vertex to itself does only depend on but not depend on the choice of vertex. Walk-regular graphs can be thought of as a spectral graph theory analogue of vertex-transitive graphs .

  3. Maximal entropy random walk - Wikipedia

    en.wikipedia.org/wiki/Maximal_Entropy_Random_Walk

    Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy.

  4. Random walk - Wikipedia

    en.wikipedia.org/wiki/Random_walk

    An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion ), the search path of a foraging animal, or the price of a fluctuating ...

  5. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [1]

  6. Biased random walk on a graph - Wikipedia

    en.wikipedia.org/wiki/Biased_random_walk_on_a_graph

    In network science, a biased random walk on a graph is a time path process in which an evolving variable jumps from its current state to one of various potential new states; unlike in a pure random walk, the probabilities of the potential new states are unequal.

  7. Continuous-time random walk - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_random_walk

    In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times. [1] [2] [3] More generally it can be seen to be a special case of a Markov renewal process.

  8. Random walker algorithm - Wikipedia

    en.wikipedia.org/wiki/Random_walker_algorithm

    Therefore, the random walk occurs on the weighted graph (see Doyle and Snell for an introduction to random walks on graphs [2]). Although the initial algorithm was formulated as an interactive method for image segmentation, it has been extended to be a fully automatic algorithm, given a data fidelity term (e.g., an intensity prior). [3]

  9. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...