Ad
related to: general and special linear groups practice quiz problems free pdf
Search results
Results from the WOW.Com Content Network
In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant
The group GL n (K) itself; The special linear group SL n (K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices; If g i is a collection of elements in GL n (K) indexed by a set I, then the subgroup generated by the g i is a linear group.
The group GL(n, F) and its subgroups are often called linear groups or matrix groups (the automorphism group GL(V) is a linear group but not a matrix group). These groups are important in the theory of group representations , and also arise in the study of spatial symmetries and symmetries of vector spaces in general, as well as the study of ...
Reductive groups include the most important linear algebraic groups in practice, such as the classical groups: GL(n), SL(n), the orthogonal groups SO(n) and the symplectic groups Sp(2n). On the other hand, the definition of reductive groups is quite "negative", and it is not clear that one can expect to say much about them.
Special groups include the general linear group, the special linear group, and the symplectic group. Special groups are necessarily connected. Products of special groups are special. The projective linear group is not special because there exist Azumaya algebras, which are trivial over a finite separable extension, but not over the base field.
Since the orthogonal group is a subgroup of the general linear group, representations of () can be decomposed into representations of (). The decomposition of a tensor representation is given in terms of Littlewood-Richardson coefficients c λ , μ ν {\displaystyle c_{\lambda ,\mu }^{\nu }} by the Littlewood restriction rule [ 12 ]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, if we consider the action of the special linear group SL n on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SL n.
Ad
related to: general and special linear groups practice quiz problems free pdf