Search results
Results from the WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
However, many other functions cannot be differentiated as easily as polynomial functions, meaning that sometimes further techniques are needed to find the derivative of a function. These techniques include the chain rule, product rule, and quotient rule.
In that way, it is a weaker result than the reciprocal rule proved above. However, in the context of differential algebra, in which there is nothing that is not differentiable and in which derivatives are not defined by limits, it is in this way that the reciprocal rule and the more general quotient rule are established.
From January 2008 to December 2012, if you bought shares in companies when M. Frances Keeth joined the board, and sold them when she left, you would have a -1.4 percent return on your investment, compared to a -2.8 percent return from the S&P 500.
The rule for integration by parts is derived from the product rule, as is (a weak version of) the quotient rule. (It is a "weak" version in that it does not prove that the quotient is differentiable but only says what its derivative is if it is differentiable.)