Search results
Results from the WOW.Com Content Network
The spin magnetic quantum number m s specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 1 ⁄ 2 , and m s is either + 1 ⁄ 2 or − 1 ⁄ 2 , often called "spin-up" and "spin-down", or α and β.
In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantum numbers includes the principal, azimuthal, magnetic, and spin quantum numbers. To describe other ...
The phrase spin quantum number refers to quantized spin angular momentum. The symbol s is used for the spin quantum number, and m s is described as the spin magnetic quantum number [3] or as the z-component of spin s z. [4] Both the total spin and the z-component of spin are quantized, leading to two quantum numbers spin and spin magnet quantum ...
In what follows, B is an applied external magnetic field and the quantum numbers above are used. Property or effect Nomenclature Equation orbital magnetic dipole moment:
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
Some textbooks [2]: 199 and the ISO standard 80000-10:2019 [3] call ℓ the orbital angular momentum quantum number. The energy levels of an atom in an external magnetic field depend upon the m ℓ value so it is sometimes called the magnetic quantum number. [4]: 240
where S is the total spin quantum number for the atom's electrons. The value 2S + 1 written in the term symbol is the spin multiplicity, which is the number of possible values of the spin magnetic quantum number M S for a given spin S.
The integer m (not to be confused with the moment, ) is called the magnetic quantum number or the equatorial quantum number, which can take on any of 2j + 1 values: [20], (), , , , +, , + (), + . Due to the angular momentum, the dynamics of a magnetic dipole in a magnetic field differs from that of an electric dipole in an electric field.