enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Foreach loop - Wikipedia

    en.wikipedia.org/wiki/Foreach_loop

    The C++ Standard Library also supports for_each, [10] that applies each element to a function, which can be any predefined function or a lambda expression. While range-based for is only from the start to the end, the range or direction can be changed by altering the first two parameters.

  3. Single instruction, multiple data - Wikipedia

    en.wikipedia.org/wiki/Single_instruction...

    For example, each of 65,536 single-bit processors in a Thinking Machines CM-2 would execute the same instruction at the same time, allowing, for instance, to logically combine 65,536 pairs of bits at a time, using a hypercube-connected network or processor-dedicated RAM to find its operands.

  4. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Data parallelism - Wikipedia

    en.wikipedia.org/wiki/Data_parallelism

    In the case of sequential execution, the time taken by the process will be n×Ta time units as it sums up all the elements of an array. On the other hand, if we execute this job as a data parallel job on 4 processors the time taken would reduce to (n/4)×Ta + merging overhead time units. Parallel execution results in a speedup of 4 over ...

  7. Instruction pipelining - Wikipedia

    en.wikipedia.org/wiki/Instruction_pipelining

    In computer engineering, instruction pipelining is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions ...

  8. Multiple instance learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_Instance_Learning

    Depending on the type and variation in training data, machine learning can be roughly categorized into three frameworks: supervised learning, unsupervised learning, and reinforcement learning. Multiple instance learning (MIL) falls under the supervised learning framework, where every training instance has a label, either discrete or real valued ...

  9. Instance-based learning - Wikipedia

    en.wikipedia.org/wiki/Instance-based_learning

    Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF networks. [2]: ch. 8 These store (a subset of) their training set; when predicting a value/class for a new instance, they compute distances or similarities between this instance and the training instances to make a decision.