Search results
Results from the WOW.Com Content Network
For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = π / 6 d 3, where d is the diameter of the sphere and also the length of a side of the cube and π / 6 ≈ 0.5236.
where SA is the surface area of a sphere and r is the radius. H = 1 2 π 2 r 4 {\displaystyle H={1 \over 2}\pi ^{2}r^{4}} where H is the hypervolume of a 3-sphere and r is the radius.
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
There is an isoperimetric inequality for the sphere with its usual metric and spherical measure (see Ledoux & Talagrand, chapter 1): . If A ⊆ S n−1 is any Borel set and B⊆ S n−1 is a ρ n-ball with the same σ n-measure as A, then, for any r > 0,
The volume of a sphere with radius r is 4 / 3 πr 3. The surface area of a sphere with radius r is 4πr 2. Some of the formulae above are special cases of the volume of the n-dimensional ball and the surface area of its boundary, the (n−1)-dimensional sphere, given below. Apart from circles, there are other curves of constant width.
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.