enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where V is the volume of a sphere and r is the radius. S A = 4 π r 2 {\displaystyle SA=4\pi r^{2}} where SA is the surface area of a sphere and r is the radius.

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    In three dimensions, the volume inside a sphere (that is, the volume of a ball, but classically referred to as the volume of a sphere) is V = 4 3 π r 3 = π 6 d 3 ≈ 0.5236 ⋅ d 3 {\displaystyle V={\frac {4}{3}}\pi r^{3}={\frac {\pi }{6}}\ d^{3}\approx 0.5236\cdot d^{3}}

  5. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    The volume of a sphere with radius r is ⁠ 4 / 3 ⁠ πr 3. The surface area of a sphere with radius r is 4πr 2. Some of the formulae above are special cases of the volume of the n-dimensional ball and the surface area of its boundary, the (n−1)-dimensional sphere, given below. Apart from circles, there are other curves of constant width.

  6. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  7. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:

  8. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...

  9. Spherical shell - Wikipedia

    en.wikipedia.org/wiki/Spherical_shell

    An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}