Search results
Results from the WOW.Com Content Network
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
For example, the mapping that takes a point (x, y, z) in three dimensions to the point (x, y, 0) is a projection. This type of projection naturally generalizes to any number of dimensions n for the domain and k ≤ n for the codomain of the mapping. See Orthogonal projection, Projection (linear algebra). In the case of orthogonal projections ...
Example of the use of descriptive geometry to find the shortest connector between two skew lines. The red, yellow and green highlights show distances which are the same for projections of point P. Given the X, Y and Z coordinates of P, R, S and U, projections 1 and 2 are drawn to scale on the X-Y and X-Z planes, respectively.
Using the Hausdorff maximal principle and the fact that in a complete inner product space orthogonal projection onto linear subspaces is well-defined, one may also show that Theorem. Any complete inner product space has an orthonormal basis. The two previous theorems raise the question of whether all inner product spaces have an orthonormal basis.
In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.
But, as the engineer projection and the standard isometry are scaled orthographic projections, the contour of a sphere is a circle in these cases, as well. As the diagram shows, an ellipse as the contour of a sphere might be confusing, so, if a sphere is part of an object to be mapped, one should choose an orthogonal axonometry or an engineer ...