Search results
Results from the WOW.Com Content Network
The goal of radiation therapy is to deliver energy, generally in the form of ionizing radiation, to cancerous tissue while sparing the surrounding normal tissue. Monte Carlo modeling is commonly employed in radiation therapy to determine the peripheral dose the patient will experience due to scattering, both from the patient tissue as well as scattering from collimation upstream in the linear ...
Doctor reviewing a radiation treatment plan. In radiotherapy, radiation treatment planning (RTP) is the process in which a team consisting of radiation oncologists, radiation therapist, medical physicists and medical dosimetrists plan the appropriate external beam radiotherapy or internal brachytherapy treatment technique for a patient with cancer.
SGRT can help to improve the safety, effectiveness and efficiency of radiation therapy treatments, by offering guidance across every step of the radiation therapy workflow, including simulation, planning, treatment and dose visualisation.
The pattern of radiation delivery is determined using highly tailored computing applications to perform optimization and treatment simulation (Treatment Planning). The radiation dose is consistent with the 3-D shape of the tumor by controlling, or modulating, the radiation beam's intensity.
It is the direct use of computer simulation in the diagnosis, treatment, or prevention of a disease. More specifically, in silico medicine is characterized by modeling, simulation, and visualization of biological and medical processes in computers with the goal of simulating real biological processes in a virtual environment. [1]
Although this type of image is an excellent indication of the basic quality of the treatment plan, the quality of film images can be poor. A BEV can be created using a radiation therapy simulator which mimics the treatment geometry (couch angle, gantry angle, etc.) using an X-ray source instead of the higher energy treatment source. The jaws ...
This process is distinct from the use of imaging to delineate targets and organs in the planning process of radiation therapy. However, there is a connection between the imaging processes as IGRT relies directly on the imaging modalities from planning as the reference coordinates for localizing the patient.
Most radiation therapy is planned using the results of a 3D CT scan. A 3D scan largely presents a snapshot of the body at a particular point in time, however due to the time of the acquisition, in which the patient is likely to have moved in some way (even if only breathing), there will be an element of blurring or averaging in the 3D scan. [ 6 ]