enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic levitation - Wikipedia

    en.wikipedia.org/wiki/Magnetic_levitation

    Magnetic levitation can be stabilised using different techniques; here rotation (spin) is used. Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces. [2]

  3. Levitation (physics) - Wikipedia

    en.wikipedia.org/wiki/Levitation_(physics)

    Levitation is accomplished by providing an upward force that counteracts the pull of gravity (in relation to gravity on earth), plus a smaller stabilizing force that pushes the object toward a home position whenever it is a small distance away from that home position. The force can be a fundamental force such as magnetic or electrostatic, or it ...

  4. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    This is very useful for computing magnetic force-field of a real magnet; It involves summing a large amount of small forces and you should not do that by hand, but let your computer do that for you; All that the computer program needs to know is the force between small magnets that are at great distance from each other.

  5. Electrodynamic suspension - Wikipedia

    en.wikipedia.org/wiki/Electrodynamic_suspension

    These time varying magnetic fields can be caused by relative motion between two objects. In many cases, one magnetic field is a permanent field, such as a permanent magnet or a superconducting magnet, and the other magnetic field is induced from the changes of the field that occur as the magnet moves relative to a conductor in the other object.

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    Using the definition of the cross product, the magnetic force can also be written as a scalar equation: [10]: 357 = ⁡ where F magnetic, v, and B are the scalar magnitude of their respective vectors, and θ is the angle between the velocity of the particle and the magnetic field.

  7. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    This demonstrates that the force is the same in both frames (as would be expected), and therefore any observable consequences of this force, such as the induced current, would also be the same in both frames. This is despite the fact that the force is seen to be an electric force in the conductor frame, but a magnetic force in the magnet's frame.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    Magnetic potential energy is the form of energy related not only to the distance between magnetic materials, but also to the orientation, or alignment, of those materials within the field. For example, the needle of a compass has the lowest magnetic potential energy when it is aligned with the north and south poles of the Earth's magnetic field.