Search results
Results from the WOW.Com Content Network
Radar cross-section (RCS), denoted σ, also called radar signature, is a measure of how detectable an object is by radar. A larger RCS indicates that an object is more easily detected. [1] An object reflects a limited amount of radar energy back to the source. The factors that influence this include: [1] the material with which the target is made;
The formula for the fine structure is given by and since the period of the PRF (T) appears at the bottom of the fine spectrum equation, there will be fewer lines if higher PRFs are used. These facts affect the decisions made by radar designers when considering the trade-offs that need to be made when trying to overcome the ambiguities that ...
Radar equation. Add languages. Add links. Article; Talk; ... Download QR code; Print/export Download as PDF; Printable version; In other projects Appearance. move to ...
Fluctuation loss is an effect seen in radar systems as the target object moves or changes its orientation relative to the radar system. It was extensively studied during the 1950s by Peter Swerling, who introduced the Swerling models to allow the effect to be simulated.
An object at height h above the ground and slant range R forms an angle α that can be calculated through sin α = h / R.By re-arrangement, R = h / sin α, or R = h csc α. The radar equation states that the signal received from an object, P e, varies inversely with the 4th power of range and directly as the square of the antenna gain, G, such that P e ~ G 2 / R 4.
The scale of dBZ values can be seen along the bottom of the image. Decibel relative to Z, or dBZ, is a logarithmic dimensionless technical unit used in radar. It is mostly used in weather radar, to compare the equivalent reflectivity factor (Z) of a remote object (in mm 6 per m 3) to the return of a droplet of rain with a diameter of 1 mm (1 mm 6 per m 3). [1]
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
Dwell time (T D) in surveillance radar is the time that an antenna beam spends on a target. [1] The dwell time of a 2D–search radar depends predominantly on the antenna's horizontal beam width θ AZ, and; the turn speed n of the antenna (in rotations per minute or rpm, i.e. 360 degrees in 60 seconds = multiplied by a factor of 6).