enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line-cylinder intersection - Wikipedia

    en.wikipedia.org/wiki/Line-cylinder_intersection

    An arbitrary line and cylinder may have no intersection at all. Or there may be one or two points of intersection. [1] Or a line may lie along the surface of a cylinder, parallel to its axis, resulting in infinitely many points of intersection. The method described here distinguishes between these cases, and when intersections exist, computes ...

  3. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...

  4. Intersection curve - Wikipedia

    en.wikipedia.org/wiki/Intersection_curve

    The intersection of two planes. The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms ...

  5. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Lineplane_intersection

    In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.

  6. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    Two distinct planes are either parallel or they intersect in a line. A line is either parallel to a plane, intersects it at a single point, or is contained in the plane. Two distinct lines perpendicular to the same plane must be parallel to each other. Two distinct planes perpendicular to the same line must be parallel to each other.

  7. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    In the real plane, a degenerate conic can be two lines that may or may not be parallel, a single line (either two coinciding lines or the union of a line and the line at infinity), a single point (in fact, two complex conjugate lines), or the null set (twice the line at infinity or two parallel complex conjugate lines).

  8. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    As any line in this extension of σ corresponds to a plane through O, and since any pair of such planes intersects in a line through O, one can conclude that any pair of lines in the extension intersect: the point of intersection lies where the plane intersection meets σ or the line at infinity. Thus the axiom of projective geometry, requiring ...

  9. Cylinder - Wikipedia

    en.wikipedia.org/wiki/Cylinder

    For a right circular cylinder, there are several ways in which planes can meet a cylinder. First, planes that intersect a base in at most one point. A plane is tangent to the cylinder if it meets the cylinder in a single element. The right sections are circles and all other planes intersect the cylindrical surface in an ellipse. [6]