Search results
Results from the WOW.Com Content Network
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...
The time series included yearly, quarterly, monthly, daily, and other time series. In order to ensure that enough data was available to develop an accurate forecasting model, minimum thresholds were set for the number of observations: 14 for yearly series, 16 for quarterly series, 48 for monthly series, and 60 for other series. [1]
This forecasting method is only suitable for time series data. [17] Using the naïve approach, forecasts are produced that are equal to the last observed value. This method works quite well for economic and financial time series, which often have patterns that are difficult to reliably and accurately predict. [17]
The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
Ready to file your taxes? You can get TurboTax for 30% off on Amazon today
Tay, Francis EH, and Lijuan Cao. "Application of support vector machines in financial time series forecasting." Omega 29.4 (2001): 309–317. Xiong, Tao, Yukun Bao, and Zhongyi Hu. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices." Energy Economics 40 (2013): 405–415.