enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theta* - Wikipedia

    en.wikipedia.org/wiki/Theta*

    For the simplest version of Theta*, the main loop is much the same as that of A*. The only difference is the _ function. Compared to A*, the parent of a node in Theta* does not have to be a neighbor of the node as long as there is a line-of-sight between the two nodes.

  3. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    Exact motion planning for high-dimensional systems under complex constraints is computationally intractable. Potential-field algorithms are efficient, but fall prey to local minima (an exception is the harmonic potential fields). Sampling-based algorithms avoid the problem of local minima, and solve many problems quite quickly.

  4. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    D* a family of incremental heuristic search algorithms for problems in which constraints vary over time or are not completely known when the agent first plans its path; Any-angle path planning algorithms, a family of algorithms for planning paths that are not restricted to move along the edges in the search graph, designed to be able to take on ...

  5. Real-time path planning - Wikipedia

    en.wikipedia.org/wiki/Real-time_path_planning

    Real-Time Path Planning is a term used in robotics that consists of motion planning methods that can adapt to real time changes in the environment. This includes everything from primitive algorithms that stop a robot when it approaches an obstacle to more complex algorithms that continuously takes in information from the surroundings and creates a plan to avoid obstacles.

  6. Probabilistic roadmap - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_roadmap

    The probabilistic roadmap [1] planner is a motion planning algorithm in robotics, which solves the problem of determining a path between a starting configuration of the robot and a goal configuration while avoiding collisions. An example of a probabilistic random map algorithm exploring feasible paths around a number of polygonal obstacles

  7. Any-angle path planning - Wikipedia

    en.wikipedia.org/wiki/Any-angle_path_planning

    Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. [ 1 ]

  8. List of PDF software - Wikipedia

    en.wikipedia.org/wiki/List_of_PDF_software

    Default PDF and file viewer for GNOME; replaces GPdf. Supports addition and removal (since v3.14), of basic text note annotations. CUPS: Apache License 2.0: No No No Yes Printing system can render any document to a PDF file, thus any Linux program with print capability can produce PDF files Pdftk: GPLv2: No Yes Yes

  9. Wavefront expansion algorithm - Wikipedia

    en.wikipedia.org/wiki/Wavefront_expansion_algorithm

    Before path planning, the map is discretized into a grid. The vector information is converted into a 2D array and stored in memory. The potential field path planning algorithm determines the direction of the robot for each cell. This direction field is shown overlaid on the robotic map containing the robot and the obstacles. The question for ...