enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  5. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .

  6. Sample ratio mismatch - Wikipedia

    en.wikipedia.org/wiki/Sample_ratio_mismatch

    Using Pearson's chi-squared goodness of fit test, we find a sample ratio mismatch with a p-value of 2.54 × 10-10. In other words, if the assignment of users were truly random, the probability that these treatment and control group sizes would occur by chance is 2.54 × 10 -10 .

  7. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Pinheiro and Bates (2000) showed that the true distribution of this likelihood ratio chi-square statistic could be substantially different from the naïve – often dramatically so. [4] The naïve assumptions could give significance probabilities ( p -values) that are, on average, far too large in some cases and far too small in others.

  8. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".

  9. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    The ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals.