Search results
Results from the WOW.Com Content Network
Euler spiral (also Cornu spiral or polynomial spiral) 1696 [2] = ... Approximations of this are found in nature Fibonacci spiral:
Approximations of this are found in nature. Spirals which do not fit into this scheme of the first 5 examples: A Cornu spiral has two asymptotic points. The spiral of Theodorus is a polygon. The Fibonacci Spiral consists of a sequence of circle arcs. The involute of a circle looks like an Archimedean, but is not: see Involute#Examples.
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie").
For example, when leaves alternate up a stem, one rotation of the spiral touches two leaves, so the pattern or ratio is 1/2. In hazel the ratio is 1/3; in apricot it is 2/5; in pear it is 3/8; in almond it is 5/13. [56] Animal behaviour can yield spirals; for example, acorn worms leave spiral fecal trails on the sea floor. [57]
Examples can be found in composite flowers and seed heads. The most famous example is the sunflower head. This phyllotactic pattern creates an optical effect of criss-crossing spirals. In the botanical literature, these designs are described by the number of counter-clockwise spirals and the number of clockwise spirals.
This page was last edited on 14 September 2019, at 13:59 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.