Search results
Results from the WOW.Com Content Network
Unlike other crosslinking agents, aldehyde-induced crosslinking is an intrinsically reversible process. NMR structure of these types of agents as interstrand crosslinks show that a 5'-GC adduct results in minor distortion to DNA, however a 5'-CG adduct destabilizes the helix and induces a bend and twist in the DNA.
Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. [1] Even if it is strongly associated with the production of thermosetting polymers , the term "curing" can be used for all the processes where a solid product is ...
In vulcanization, sulfur is the cross-linking agent. Its introduction changes rubber to a more rigid, durable material associated with car and bike tires. This process is often called sulfur curing. In most cases, cross-linking is irreversible, and the resulting thermosetting material will degrade or burn if heated, without melting.
Therefore, by definition, the transition state for tertiary reactions will be at a lower energy than for secondary reactions. However, the BEP principle cannot justify why the energy is lower. Using Hammond's postulate, the lower energy of the tertiary transition state means that its structure is relatively closer to its reactants R(tertiary)-X ...
The third category involves cross-linking of enzyme aggregates or crystals, using a bifunctional reagent, to prepare carrier-free macroparticles. The use of a carrier inevitably leads to ‘dilution of activity’, owing to the introduction of a large portion of non-catalytic ballast, ranging from 90% to >99%, which results in lower space-time ...
Cross-linking may refer to Cross-link, a chemical bond of one polymer chain to another; Corneal collagen cross-linking, a parasurgical treatment for corneal ectasia ...
In an exothermic reaction, by definition, the enthalpy change has a negative value: ΔH = H products - H reactants < 0. where a larger value (the higher energy of the reactants) is subtracted from a smaller value (the lower energy of the products). For example, when hydrogen burns: 2H 2 (g) + O 2 (g) → 2H 2 O (g) ΔH⚬ = −483.6 kJ/mol [3]
The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. [1] Thus, endo in endothermic refers to energy or heat going in, and exo in exothermic refers to energy or heat going out. In each term (endothermic and exothermic) the prefix ...