Search results
Results from the WOW.Com Content Network
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...
In recent decades, new methods have been developed for robust regression, regression involving correlated responses such as time series and growth curves, regression in which the predictor (independent variable) or response variables are curves, images, graphs, or other complex data objects, regression methods accommodating various types of ...
In fact, it can be shown that the unconditional analysis of matched pair data results in an estimate of the odds ratio which is the square of the correct, conditional one. [2] In addition to tests based on logistic regression, several other tests existed before conditional logistic regression for matched data as shown in related tests. However ...
The researcher performs a logistic regression, where "success" is a grade of A in the memory test, and the explanatory (x) variable is dose of caffeine. The logistic regression indicates that caffeine dose is significantly associated with the probability of an A grade (p < 0.001). However, the plot of the probability of an A grade versus mg ...
In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning. [ 1 ] [ 2 ]
The goal of multinomial logistic regression is to construct a model that explains the relationship between the explanatory variables and the outcome, so that the outcome of a new "experiment" can be correctly predicted for a new data point for which the explanatory variables, but not the outcome, are available.
In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]